Biomimetic 3D Tissue Models for Advanced High-Throughput Drug Screening.
نویسندگان
چکیده
Most current drug screening assays used to identify new drug candidates are 2D cell-based systems, even though such in vitro assays do not adequately re-create the in vivo complexity of 3D tissues. Inadequate representation of the human tissue environment during a preclinical test can result in inaccurate predictions of compound effects on overall tissue functionality. Screening for compound efficacy by focusing on a single pathway or protein target, coupled with difficulties in maintaining long-term 2D monolayers, can serve to exacerbate these issues when using such simplistic model systems for physiological drug screening applications. Numerous studies have shown that cell responses to drugs in 3D culture are improved from those in 2D, with respect to modeling in vivo tissue functionality, which highlights the advantages of using 3D-based models for preclinical drug screens. In this review, we discuss the development of microengineered 3D tissue models that accurately mimic the physiological properties of native tissue samples and highlight the advantages of using such 3D microtissue models over conventional cell-based assays for future drug screening applications. We also discuss biomimetic 3D environments, based on engineered tissues as potential preclinical models for the development of more predictive drug screening assays for specific disease models.
منابع مشابه
Bioprinting towards Physiologically Relevant Tissue Models for Pharmaceutics.
Improving the ability to predict the efficacy and toxicity of drug candidates earlier in the drug discovery process will speed up the introduction of new drugs into clinics. 3D in vitro systems have significantly advanced the drug screening process as 3D tissue models can closely mimic native tissues and, in some cases, the physiological response to drugs. Among various in vitro systems, biopri...
متن کاملAdvancing cancer research using bioprinting for tumor-on-a-chip platforms
There is an urgent for a novel approach to cancer research with 1.7 million new cases of cancer occurring every year in the United States of America. Tumor models offer promise as a useful platform for cancer research without the need for animal models, but there remains a challenge to fabricate a relevant model which mimics the structure, function and drug response of human tumors. Bioprinting...
متن کاملControllable organization and high throughput production of recoverable 3D tumors using pneumatic microfluidics.
Three-dimensional tumor culture methods offer a high degree of biological and clinical relevance to in vitro models as well as cancer therapy. However, a straightforward, dynamic, and high-throughput method for micro-manipulation of 3D tumors is not yet well established. In this study, we present a novel and simple strategy for producing biomimetic 3D tumors in a controllable, high throughput m...
متن کاملThree-dimensional polymer scaffolds for high throughput cell-based assay systems.
Many whole cell-based assays in use today rely on flat, two-dimensional (2D) glass or plastic substrates that may not produce results characteristic of in vivo conditions. In this study, a three-dimensional (3D) cell-based assay platform was established by integrating 3D synthetic polymer scaffolds with standard cell culture dishes and multi-well plates. This technology can be used to feasibly ...
متن کاملA novel hanging spherical drop system for the generation of cellular spheroids and high throughput combinatorial drug screening.
We propose a novel hanging spherical drop system for anchoring arrays of droplets of cell suspension based on the use of biomimetic superhydrophobic flat substrates, with controlled positional adhesion and minimum contact with a solid substrate. By facing down the platform, it was possible to generate independent spheroid bodies in a high throughput manner, in order to mimic in vivo tumour mode...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of laboratory automation
دوره 20 3 شماره
صفحات -
تاریخ انتشار 2015